LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034					
1	B.Sc. DEGREE EXAMINATION – MATHEMATICS				
×	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $				
2 Lu	TEENT LUX VESTRA	D OLMLOILK			
	UMT 3502 – DIFFERI	ENTIAL EQUAT	TIONS AND LAPLAC	CE TRANSFORM	
Б				M. 100 M. 1	
Da Ti	ate: 04-11-2023 me: 09:00 AM - 12:00 NO(Dept. No.		Max. : 100 Marks	
11		511			
		SECTIC	DN A - K1 (CO1)		
	Answer ALL the Questions(10 x 1 = 10)				
1.	Answer the following				
a)	Eliminate <i>a</i> and <i>b</i> from $xy = ae^x + be^{-x}$				
b)	Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 0.$				
c)	Eliminate the arbitrary function from $z = f(x^2 + y^2)$				
d)	Evaluate $L(t^2 + 2t + 3)$.				
e)	Evaluate $L^{-1}(\frac{s}{s^2+9})$				
2.	Fill in the blanks				
a)	A differential equation is an equation in which occur.				
b)	The solution of the equation $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$ is called the				
c)	The solution of the equation $f(p,q) = 0$ is of the form				
d)	$L(e^{-st}) =$				
e)	$L^{-1}(sinat) =$	·			
	SECTION A - K2 (CO1)				
	Answer ALL the Questions			(10 x 1 = 10)	
3.	Chose the Correct Answer				
a)	The order and degree of the differential equation $2\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2$ is				
1 >	i) 1,2 ii) 2,1	iii) 2,2	iv) none of the	above	
b)	The roots of the auxillary equa	tion of the differer	tial equation $\frac{d^2y}{dx^2} - 4y =$	= 0	
	i) 2,2 ii) 2, -2	iii) -2,-2	iv) none of the	above	
c)	A solution containing as many	arbitrary constants	s as there are independent	nt variables is called	
1)	i)complete integral ii)pa	articular integral	iii) single integral	iv) none of the above	
a)	$L(t^n) = \dots n!$	n			
	1) $\frac{1}{s^{n+1}}$ 11) $\frac{1}{s^n}$	111) $\frac{1}{s^{n+1}}$	iv) none of the abc	ove	
e)	$L^{-1}(e^{at}) =$	1			
	$i)\frac{1}{s+a}$ $ii)\frac{1}{s-a}$	iii) $\frac{1}{s}$	iv) none of the abo	ve	
4.	True or False				
a)	The order of an ordinary differ	ential equation is o	of the order of the highes	st derivative occurring in it.	
b)	The complementary function and the general solution are different for $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 5y = 0$.				
c)	A solution of a partial differential equation is a relation between the dependent and the independent				
	variables that satisfies the differential equation.				

d)	It is a necessary condition that the function should be of exponential order to have Laplac				
	Transform.				
e)	e) The Laplace Transform can be used to solve a system of differential equations.				
SECTION B - K3 (CO2)					
Answer any TWO of the following(2 x 10 = 20)					
5.	Solve $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$.				
6.	Solve $(D^2 - 3D + 2)y = sin3x$				
7.	Solve $\frac{d^2z}{dx^2} = a^2z$ given that when $x = 0$, $\frac{dz}{dx} = a$ siny and $\frac{dz}{dy} = 0$.				
8.	8. Obtain a complete integral of $xp^2 - ypq + y^3q - y^2z = 0$.				
SECTION C – K4 (CO3)					
Ans	wer any TWO of the following $(2 \times 10 = 20)$				
9.	Solve $\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$				
10.	Evaluate (i) $L\left(\frac{1-e^t}{t}\right)$ (ii) $\int_0^\infty \frac{e^{-t}-e^{-2t}}{t}dt$				
11.	Find $L^{-1}(\frac{s-3}{s^2+4s+13})$				
12.	Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = sint$ given that $y = \frac{dy}{dt} = 0$ when $t = 0$.				
$\frac{at}{section D - K5 (CO4)}$					
Ans	wer any ONE of the following $(1 \times 20 = 20)$				
13.	(i) Solve $xp^2 - 2yp + x = 0.$ (10 Marks)				
	(ii) A boat is rowed with a velocity u directly across a stream of width a , if the velocity of th				
	current is directly proportional to the product of the distances from the two banks, find the path o				
	the boat and the distance downstream to the point where it lands. (1)				
14.	Solve $\frac{d^2y}{d^2y} + y = sacrusing the variation of parameter$				
	$dx^2 + y = seex$ using the variation of parameter.				
	SECTION E – K6 (CO5)				
Ans	wer any ONE of the following (1 x 20 = 20)				
15.	(i) Find the general solution of $(y + z)p + (z + x)q = x + y$.				
	(ii) Solve $p(1+q^2) = q(z-1)$. (10+10 Marks)				
16.	Solve the simultaneous equations $3\frac{dx}{dt} + \frac{dy}{dt} + 2x = 1$ and $\frac{dx}{dt} + 4\frac{dy}{dt} + 3y = 0$ given that				
	x = 0 = y at $t = 0$ by using Laplace transform.				
&&&&&&&					